
IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

154

COMPOUND PREDICATES TESTING USING
PREDICATE-BASED STRATEGIES

Satyabrata Das
Department Of Computer Science & Engineering,

Aryan Institute Of Engineering & Technology, Bhubaneswar
Namrata Khamari

Department Of Computer Science & Engineering,
Nm Institute Of Engineering & Technology, Bhubaneswar

Biraja Nayak
Department Of Computer Science & Engineering,

Capital Engineering College, Bhubaneswar
Susmita Mohapatra

Department Of Computer Science & Engineering,
Raajdhani Engineering College, Bhubaneswar

Abstract: Predicate testing is a common approach to software testing, which requires certain types of tests for
each predicate in a program. The main difficulty in predicate testing is testing compound predicates. One way to
test a compound predicate C is to traverse all combinations of “t” and “f” for each simple predicate in C. But this
approach requires a large number of tests. Recently, a predicate testing approach that reduces the number of tests
required to detect possible errors in compound predicates has been proposed. This approach includes three
predicate-based test generation criteria, called BOR (boolean operator), BRO (boolean and relational operator),
and BRE (boolean and relational expression) testing criteria. Also, the paper describes a system that implements
this approach for testing compound predicates in C++ programs. Finally, the paper presents the results of the
experiments that have been carried out to evaluate the error-exposing ability of the system, and the testing criteria
employed in it, and to compare the percentage coverage of these criteria.

Keywords: Software testing; Predicate testing; Compound predicates;

I. INTRODUCTION
One way to show the correctness of programs is to use exhaustive testing. But, this is not a practical approach
because it is very costly. In order to make the testing process more practical, we must find criteria for choosing
representative test cases that are comprehensive enough to span the problem domain and provide us with the
required degree of confidence that the software works correctly and reliably. At the same time, this test set must
be small enough so that the testing can be performed within the available schedule and cost constraints. Predicate
testing is a common approach to software testing, which requires certain types of tests for each predicate (or
condition) in a program. A number of predicate testing strategies have been proposed, such as branch testing, and
domain testing, [1, 5]. A predicate is either a simple or compound predicate. A simple predicate is a Boolean
variable or a relational expression possibly with one or more NOT operators. A relational expression is of the form
E1 rop E2, where E1 and E2 are arithmetic expressions and rop is one of the six relational operators {<, , >, , =,

}. A compound predicate consists of one or more binary Boolean operators {AND, OR}, two or more operands,
and possibly NOT operators and parentheses. A Boolean expression is a predicate with no relational expressions.

The predicate is incorrect when it contains one or more errors involving boolean operators, boolean variables,
relational operators, arithmetic expressions or parentheses. The main difficulty in predicate testing is testing
compound predicates. One way to test a compound predicate C, that contains n, n > 0, AND/OR operators, is to
traverse all combinations of “t” and “f” for each simple predicate in C, which requires 2n+1 tests, and to traverse all
combinations of “<”, “=”, and “>” for each relational expression in C, which requires 3n+1 tests. Another way to test a
compound predicate is strong mutation testing [2, 3]. For the predicate C, a set of mutants is generated by creating
possible errors in C. To “kill” a nonequivalent mutant C* of C, a test is chosen to distinguish C* from C. The number
of nonequivalent mutants of C due to boolean and/or relational operator errors is an exponential function of the
number of boolean operators in C. If each mutant of C is allowed to have a single boolean or relational operator
error only, then the number of mutants of C is a linear function of the number of AND/OR operators in C.

Tai [6] has proposed a predicate testing approach that reduces the number of tests required to detect possible
errors in compound predicates. His approach includes three predicate-based test generation and selection criteria
for compound predicates, called the BOR (boolean operator), the BRO (boolean and relational operator), and the

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

155

BRE (boolean and relational expression) testing criteria. For the compound predicate C, his approach requires at

most n+2 tests for the detection of boolean operator errors in C, and at most 2*n+3 tests for the detection of

boolean and relational operator errors in C. A software testing system has been built that implements the

proposed predicate testing approach for testing compound predicates in C++ programs. The paper is organized as
follows: Section 2 describes the Tai’s three predicate-based testing criteria, i.e. the BOR, BRO, and BRE testing
criteria, and the algorithms of generating minimum tests to cover these criteria. Section 3 describes the proposed
predicate testing approach, and the system that implements it. Section 4 presents the results of the experiments
that have been carried out to evaluate the error-exposing ability of the system, and the predicate-based testing
criteria.

II. THE PREDICATE-BASED TESTING CRITERIA

This section describes the Tai’s three predicate-based test generation and selection criteria for detecting errors in
compound predicates, i.e. the BOR, BRO, and BRE testing criteria, and the algorithms of generating minimum tests
to cover these criteria.

There are three types of errors that can be found in a compound predicate:
1. Boolean operator errors (incorrect AND/OR operator or missing/extra NOT operator),
2. Relational operator errors (incorrect relational operator),
3. off-by-ε , off-by-ε* , and off-by-ε+ errors in an arithmetic expression, which are defined as follows:

Assume that the relational expression (E1 rop1 E2) is incorrect and its correct version is (E3 rop2 E4), where

E1=E2 and E3=E4 are nonequivalent, continuous functions with the same set of variables.

 (E1 rop1 E2) is said to have an off-by-ε error if any test making E3=E4 makes |E1-E2| = ε.

 (E1 rop1 E2) is said to have an off-by-ε* error if any test making E3=E4 makes |E1-E2| ≥ ε.

 (E1 rop1 E2) is said to have an off-by-ε+ error if any test making E3=E4 makes |E1-E2| > ε.

Note that an off-by-ε or off-by-ε+ error implies an off-by-ε* error and that the detection of an off-by-ε* error implies
that detection of off-by-ε or off-by-ε+ error.

BR-constraints for predicates:
A BR-constraint for a predicate specifies a restriction on the value of each boolean variable or relational
expression in the predicate, [6]. For a boolean variable say B, the symbols {t, f} are used to denote different types
of restrictions on the value of B, where t indicates that the value of B is true, and f indicates that the value of B is
false. For a relational expression, say E rop E', the symbols {t, f, <, =, >, +ε, -ε} are used to denote different types of
restrictions on the value of the relational expression, where:

 t denotes that the value of E rop E' is true.
 f denotes that the value of E rop E' is false.
 < denotes that E - E' < 0.
 = denotes that E - E' = 0.

 > denotes that E - E' > 0.
 +ε denotes that 0 < E - E' ≤ +ε.
 -ε denotes that -ε ≤ E - E' < 0.

A constraint X for a predicate C is said to be covered (or satisfied) by a test if during the execution of C with this
test, the value of each boolean variable or relational expression in C satisfies the corresponding restriction in X.
For example, the constraint {=, <} for a predicate (E1>=E2) OR (E3>E4) is covered by a test making E1=E2 and

E3<E4. The result of any test for C that covers X is denoted as C(X).

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

156

A set S of constraints for a predicate C is said to be covered by a test set T if each constraint in S for C is covered by
at least one test in T. The set S can be divided into two subsets S_t(C) and S_f(C), where, S_t(C) = {X in S | C(X)=t}
and S_f(C) = {X in S | C(X)=f}. In order to generate a minimum constraint set for a compound predicate C, it must be
transformed into its syntax tree, denoted as ST(C). In this tree, each leaf node denotes a boolean variable /
relational expression and each non leaf node denotes a boolean operator. In ST(C), an immediate descendant of a
non leaf node N is referred to as the input node of N. In his algorithms for generating minimum constraint sets, Tai
used a new operator A ⊗ B on two sets A and B. A B, called the onto from A to B, is a minimal set of (u, v) in A B
such that every element in A is chosen as u at least once and every element in B as v at least once. Thus, |A B| is
the maximum of |A| and |B|. If both A and B have two or more elements, A B has several possible values and
returns just one of them.

The BOR testing criterion:

The BOR testing criterion for a predicate C requires a set of tests to guarantee the detection of boolean operator
errors. The following algorithm generates a minimum BOR constraint set S for C that should be covered by a test
set T in order to satisfy the BOR testing criterion.

Algorithm BOR_min:
Let C be a predicate. For each leaf node in ST(C), its BOR constraint set is {(t), (f)}. The non-leaf nodes in ST(C) are
visited from bottom to top. After visiting the root node of ST(C), a BOR constraint set for C is available. When node
N is visited, the BOR constraint set S for N is constructed by using one of the following rules:
(bor1) Let N be an OR node with N1 and N2 as its input nodes. Let S1 and S2 be the BOR constraint sets for N1

and N2 respectively.

S_f = S1_f S2_f, and
S_t = (S1_t ×{f2}) ({f1}× S2_t)

where (f1, f2) is any element of S_f, and f1 and f2 are elements of S1_f and S2_f, respectively.

(bor2) Let N be an AND node with N1 and N2 as its input nodes. Let S1 and S2 be the BOR constraint sets for N1
and N2 respectively.

S_t = S1_t S2_t, and
S_f = (S1_f ×{t2}) ({t1}× S2_f)

where (t1, t2) is any element of S_t, and t1 and t2 are elements of S1_t and S2_t, respectively.

(bor3) Let N be a NOT node with N1 as its input node. Let S1 be the BOR constraint set for N1.

S_t = S1_f, and S_f = S1_t.

The BRO testing criteria:
The BRO testing criterion for a predicate C requires a set of tests to guarantee the detection of boolean and
relational operator errors. The requirement of relational operator testing can be defined as the coverage of the
constraint set {(>), (=), (<)}. The constraint set {(+ε), (=), (-ε)} is a special case of {(>), (=), (<)}, and can be used to
detect off-by-ε, off-by-ε*, and off-by-ε+ errors. The following algorithm generates a minimum BRO constraint set S
for C that should be covered by a test set T in order to satisfy the BRO testing criterion.

Algorithm BRO_min:

Algorithm BRO-min is algorithm BOR-min modified as follows:
 For each boolean variable in predicate C, its BRO constraint set is {(t), (f)}.

 For each relational expression (E1 rop E2) in C, its BRO constraint set is S = {(>), (=), (<)} and separate S into

S_t and S_f according to rop. For example, if rop is “>”, then S_t ={(>)}, and S_f ={(=), (<)}.
 Change the names of the rules (bor1), (bor2), and (bor3) to (bro1), (bro2), and (bro3), respectively.

The BRE testing criteria:

The BRE testing criterion with parameter ε, ε>0, for a compound predicate requires a set of tests to guarantee the
detection of (single or multiple) boolean operator errors, relational operator errors, and off-by-ε+ errors. (The
parameter ε in BRE testing is often omitted.) The following algorithm generates a minimum BRE constraint set S
for C that should be covered by a test set T in order to satisfy the BRE testing criterion.

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

157

Algorithm BRE_min:
Algorithm BRE-min is algorithm BOR-min modified as follows:
 For each boolean variable in predicate C, its BRE constraint set is {(t), (f)}.

 For each relational expression (E1 rop E2) in C, its BRE constraint set is S = {(+ε), (=), (-ε)}, and separate into

S_t and S_f according to rop in the same way as in algorithm BRO_Min.
 Change the names of the rules (bor1), (bor2), and (bor3) to (bre1), (bre2), and (bre3), respectively.

III. THE PROPOSED APPROACH AND THE AUTOMATED SUPPORT SYSTEM

A software testing system has been built to test C++ programs, using the proposed approach described in Sections
2. The system is written in Borland C++, and it consists of three main phases:

1. Classifying and reformatting phase.
2. Static analysis and instrumentation phase.
3. Execution and reporting phase.

In the first phase, program statements are classified and some of them are reformatted, Figure 1, without affecting
the program structure to enable the insertion of the probes.

The main tasks of the static analysis and instrumentation phase are as follows:
1. Collect information about the relational and boolean expressions in control statements, such as if, while, for,

switch, etc.
2. For each program predicate, build the syntax tree, and generate the BOR, BRO, and BRE constraint sets, by

implementing the algorithms: BOR_Min, BRO_Min, and BRE_Min, respectively, described in Section 2.

The generation of the required constraint set for a compound predicate C is performed as follows:

(a) If C contains only a boolean variable, then the BOR constraint set for this predicate is {0,1}, where 0 and
1 represent f and t, respectively.

(b) If C contains only a relational expression, then its BOR constraint set is {0,1}, its BRO constraint set is
{“<”, “=”, ”>”}, and its BRE constraint set is {“LHS-RHS=-1”, “LHS-RHS=0”, “LHS-RHS=1”}, where LHS and
RHS represent the left-hand and right-hand sides of the relational expression, respectively.

(c) If C contains one or more operators AND/OR, then its syntax tree ST(C) is built. In this tree, each leaf
node denotes a Boolean variable or a relational expression and each non leaf node denotes a boolean
operator.

 For each leaf node construct and store the BOR, BRO, and BRE constraint sets as in the cases (a)
and (b) above.

 Then, non leaf nodes are visited from the bottom to the root. For each non leaf node construct the
BOR, BRO, and BRE constraint sets from the constraint sets of its input nodes by applying the
BOR_Min, BRO_Min, and BRE_Min algorithms, respectively.

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

158

 After visiting the root node of ST(C), BOR, BRO, and BRE constraint sets for C will be available.

3. Insert a software probe in each basic block of the program to record its number when it is traversed during
program execution.

4. Insert software probes before any control statement in the program to record information about its predicate
during program execution.

At the end of the analysis phase, the following lists are produced:
 The BOR, BRO, and BRE constraint sets associations of each predicate.

 The number of all BOR, BRO, and BRE test cases.

Figure 2 shows part of the static analysis report generated by the system for the example program. It shows the
number of all BOR, BRO, and BRE test cases, and the BOR, BRO, and BRE constraint sets associations generated by
the system for the predicate a+b>c && b+c>a && c+a>b at statement 16 in block 4.

**
No. of BOR test cases : 17
No. of BRO test cases : 27
No. of BRE test cases : 27
**
FOR EXP. a+b>c&&b+c>a&&c+a>b AT ST. NO. 16 IN BLOCK 4
**
BOR TEST CASES ARE:
111 011 101 110
BRO TEST CASES:
>>> =>> <>> >=> ><> >>= >><
BRE TEST CASES:
LHS1-RHS1=1, LHS2-RHS2=1, LHS3-RHS3=1,
LHS1-RHS1=0, LHS2-RHS2=1, LHS3-RHS3=1,
LHS1-RHS1=-1, LHS2-RHS2=1, LHS3-RHS3=1,
LHS1-RHS1=1, LHS2-RHS2=0, LHS3-RHS3=1,
LHS1-RHS1=1, LHS2-RHS2=-1, LHS3-RHS3=1,
LHS1-RHS1=1, LHS2-RHS2=1, LHS3-RHS3=0,
LHS1-RHS1=1, LHS2-RHS2=1, LHS3-RHS3=-1
**

Figure 2. Part of the static analysis report generated by the system for the example program

The function of the execution and reporting phase is monitoring the fulfillment of the BOR, BRO, and BRE testing
criteria, during test runs of the program being tested. During program execution with test runs, the inserted
probes record:

1. The value of each boolean expression and/or each relational expression in the traversed control statements.
2. The values of the left-hand side and the right-hand side of each relational expression in the traversed control

statements.

At the end of a test run, the system reports on:
 The uncovered BOR, BRO, and BRE constraint sets, for each predicate:
 The percentage coverage of BOR, BRO, and BRE constraint sets.

Figure 3 shows a part of the report produced by the system after a test run for the example program. The figure
shows the percentage coverage of BOR, BRO, and BRE constraint sets, for the whole program. It also shows the
uncovered constraint sets for the predicate a+b>c && b+c> a&& c+a>b.

******************* RUN (1) *************************
* 35.3 % OF BOR TEST CASES ARE COVERED.
* 25.9 % OF BRO TEST CASES ARE COVERED.
* 22.2 % OF BRE TEST CASES ARE COVERED.

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

159

**
FOR EXP. a+b>c&&b+c>a&&c+a>b AT ST. NO. 16 IN BLOCK 4
**
Not covered BOR test cases:
011 110
Not covered BRO test cases:
=>> <>> ><> >>= >><
Not covered BRE test cases:
LHS1-RHS1=0, LHS2-RHS2=1, LHS3-RHS3=1,
LHS1-RHS1=-1, LHS2-RHS2=1, LHS3-RHS3=1
LHS1-RHS1=1, LHS2-RHS2=0, LHS3-RHS3=1,
LHS1-RHS1=1, LHS2-RHS2=-1, LHS3-RHS3=1,
LHS1-RHS1=1, LHS2-RHS2=1, LHS3-RHS3=0,
LHS1-RHS1=1, LHS2-RHS2=1, LHS3-RHS3=-1
**

Figure 3. A part of the system report after a test run of the example program

The tester then re-runs the program with test data until the BOR, BRO, and BRE testing criteria, are covered, if
possible.

IV. THE EXPERIMENTS
This section describes the experiments that have been carried out in order to evaluate the error-exposing ability of
the system, and the predicate-based testing criteria. In these experiments, fourteen C++ programs were selected
and seeded with errors one at a time. In each case, the erroneous program was analyzed, instrumented, and
executed with the test data. The output of this execution was compared with the correct output, which was
obtained by executing the correct program with the same data. The success of the system in discovering the error
is judged by the occurrence of a deviation in the actual output. A criterion is considered to be effective in
discovering an error if the data chosen to fulfil it caused a deviation in the actual output. The errors that were
seeded into programs in these experiments fall into two categories: domain errors and computation errors. The
definitions of these two categories have been given by Howden [4]. Table 1 shows the types of these errors and
their frequencies in the experiments.

Table 1. The types of seeded errors and their frequencies

Code Error type
Error

The results of the experiments showed that the three predicate-based criteria have discovered 127 out of 142
errors, which represents 89.4% of all seeded errors. Table 2 shows the percentage of errors of each type
discovered by the three predicate-based criteria: BOR, BRO, and BRE. It can be seen from Table 2 that:
 BRO has the highest ability of discovering the errors of type D1.
 BOR and BRO have discovered the same percentage of the errors of type D2, D3, and D5, which is higher than

BRE.
 BRO have discovered the same percentage of the errors of type D4, which is higher than BOR and BRE.
 BOR have discovered the same percentage of the errors of type D6 and C2, which is higher than BRO and BRE.
 BRO, and BRE have discovered the same percentage of the errors of type C1, which is higher than BOR.
 All criteria have discovered all of the errors of type C3.

 Frequency
C Computation errors

C1 wrong variable reference 4
C2 incorrect constant value 22
C3 statement wrongly placed 1
D Domain errors

D1 wrong relational operator 50
D2 a variable replaced by a constant 3
D3 wrong variable reference 21
D4 incorrect constant value 33
D5 statement wrongly placed 2
D6 wrong boolean operator 6

Total 142

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

160

Table 2 Percentage of errors of each type discovered by the three predicate-based criteria
Error-type

Predicate-Based

Predicate-Based

BOR BRO BRE

C1 50.0% 75.0% 75.0% 75.0%

C2 90.9% 86.4% 81.8% 90.9%

C3 100% 100% 100% 100%

D1 86.0% 94.0% 86.0% 96.0%

D2 66.7% 66.7% 0% 66.7%

D3 76.2% 76.2% 57.1% 76.2%

D4 84.8% 87.9% 84.8% 90.9%

D5 100% 100% 50.0% 100%

D6 83.3% 33.3% 0% 83.3%

Table 3 Percentage coverage of the three predicate-based criteria,

Program
No. of test cases Percentage coverage

BOR BRO BRE BOR BRO BRE
Prog 01 13 19 19 100.0 100.0 89.4
Prog 02 8 12 12 100.0 83.3 83.3
Prog 03 8 12 12 100.0 100.0 100.0
Prog 04 8 12 12 100.0 100.0 100.0
Prog 05 12 18 18 100.0 94.4 94.4
Prog 06 12 18 18 100.0 94.4 94.4
Prog 07 4 6 6 100.0 83.3 50.0
Prog 08 17 27 27 100.0 81.5 59.3
Prog 09 4 6 6 100.0 83.3 83.3
Prog 10 4 6 6 100.0 100.0 100.0
Prog 11 6 9 9 100.0 66.7 66.7
Prog 12 28 42 42 96.4 97.6 97.6
Prog 13 14 22 22 100.0 68.2 59.1
Prog 14 14 21 21 100.0 95.2 95.2

Another experiment has been conducted. In this experiment, each of the fourteen programs was executed with test
data to reach 100% coverage of the BOR criterion, if possible, and the percentage coverage of the other criterion
were noted. Table 3 shows the results of this experiment. It can be seen from this table that covering the BOR
criterion does not always guarantee the coverage of the other predicate-based criteria. This means that more test
data are needed to cover the other criteria, and this in turn increases the possibility of discovering more errors.
These results indicate that these criteria complement each other.

V. CONCLUSION

The predicate testing approach, proposed by Tai [6], reduces the number of tests required to detect possible
errors in compound predicates. It considers the boolean and relational operators errors. The paper presented a
brief description of the BOR, the BRO, and the BRE testing criteria included in Tai’s approach. Then, the paper
described the proposed predicate testing approach. Also, the paper described the components of a system that has
been built to implement this approach for testing compound predicates in C++ programs. Experiments have been
carried out to evaluate the error-exposing ability of the constructed system, and the predicate-based testing
criteria. The results of the experiments indicate that the system is very effective in discovering the errors in
compound predicates. Also, the results indicate that covering some criteria does not always guarantee the
coverage of the others. This means that more test data are needed to cover the other criteria, and this in turn
increases the possibility of discovering more errors. Thus, the criteria employed in the system complement each
other.

IJEMHS (www.ijemhs.com) Volume 31, Issue 02, Quarter 02 (2019) Publishing Month and Date: 29th June, 2019

161

REFERENCES

1. B. Beizer, Software testing techniques, 2nd edition, Van Nostrand Reinhold, New York, 1990.
2. T.A. Budd, R.J. Lipton, F.G. Sayward, and R.A. DeMillo, “Mutation analysis”, Technical Report No. 155,

Department of Computer Science, Yale University, 1979.
3. R.A. DeMillo, R.J. Lipton, and F.G. Sayward, “Hints on test data selection: help for the practicing programmer”,

IEEE Computer, vol. 11, pp. 34-41, 1978.
4. W.E. Howden, “Reliability of the path analysis testing strategy”, IEEE Transactions on Software Engineering,

vol. SE-2, pp. 208-215, 1976.
5. W.E. Howden, Functional program testing and analysis, McGraw-Hill Book Co., 1987.
6. K.-C. Tai, “Theory of fault-based predicate testing for computer programs”, IEEE Transactions on Software

Engineering, vol. 22, pp. 552-562, 1996.

